Evaluation & Design of Filters

Torsten Möller, Simon Fraser Univ. Raghu Machiraju, The Ohio State University

Other Significant Contributors: Klaus Mueller, SUNY-Stony Brook Roni Yagel, Insight Theraputics

Outline

- Motivation
- Theory
 - Approximation Theory
 - Signal Processing Approach
- Practical Considerations
 - **■** Function Interpolation
 - **■** Derivative Computation
- Summary

Problem Definition (2) Generally there is no way to predict the values in-between the given (measured) points (x_i, f_i). We need knowledge of the space of functions, that our measurements were made in.

Theory-Math Theory-SP Interpolation Derivative

Orthogonal polynomials

- $\label{eq:computation} \textbf{I} \ \ \text{Computation of coefficients of } p_n(x) \ \text{is} \\ \text{unstable}.$
- Basis xⁱ is not orthogonal.
- Rewrite polynomial $p_n(x)$ in a different, orthogonal, basis P_i :

$$p_n(x) = b_0 P_0(x) + b_1 P_1(x) + \dots + b_n P_n(x)$$

with condition:

$$\left\langle P_i, P_j \right\rangle_w = \int_a^b P_i(x) P_j(x) w(x) dx = 0$$

Theory-Math Theory-SP Interpolation Derivative

Orthogonal polynomials (2)

- Common orthogonal polynomials:
 - Legendre
 - Chebychev
 - Trigonometric functions (not polynomials)
 - Bessel functions (not polynomials).

Trigonometric functions			
More than just aWidely used for a Cont. Basis functions:	tool for interpolation analysis of signals Discrete Basis functions:		
$\phi_{\omega}(x) = e^{i\omega x}$ Fourier Transform	$\phi_j^n(k) = e^{i2\pi jk/n}$ Discrete Fourier Transform		
$f(x) = \int_{-\infty}^{\infty} F(u)e^{iux}du$	$f_j = \sum_{k=0}^{n-1} F_k e^{i2\pi j k/n}$		
$F(u) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)e^{-iux}dx$	$F_k = \frac{1}{n} \sum_{j=0}^{n-1} f_j e^{-i2\pi j k/n}$		

The Mark St. Co.				
Theory-Math Theory-SP	Interpolation	Derivative		
Fourier Transforms				
There are 4 major transforms used				
Name	Spatial D.	Freq. D.	Use	
FT - Fourier				
Transform	cont. cont.	cont.	for analysis	
FS - Fourier		discret	Interpolation	
Series	cont.		trad. Math appr.	
DTFT - Discrete	discret cont.	cont.	Filter Design	
Time FT	discret	COIII.	trad. SP appr.	
DFT - Discrete FT	discret	discret	Implementation	
			(computer)	

Requirements

Performance
Stability of the numerical algorithm
Accuracy (numerical + perceptual)

Requirements (2)

I Accuracy considerations depend on underlying function space.
I For smooth function spaces, we consider asymptotic error behaviors.
I For bandlimited spaces, we consider blurring, aliasing and overshoot (Frequency domain).
I Not considered – Perceptual metrics

Fourier Transforms (2)

I Hence $e^{i\omega k}$ is an eigen-function and $H(\omega)$ its eigenvalue

I $H(\omega)$ is the Fourier-Transform of the h[n] and hence characterizes the underlying system in terms of frequencies

I $H(\omega)$ is periodic with period 2π I $H(\omega)$ is decomposed into
I phase (angle) response $\triangleleft H(\omega)$ I magnitude response $|H(\omega)|$

- Assumes smooth function space
- General scheme for spatial accuracy evaluation of filter functions
- Generalization of Keys' method using a Taylor series expansion
- Enables filter evaluation and design

- **■**Taylor Series:
- I approximate the error of the numerical algorithm
- I evaluate its asymptotic behavior.
- ■Assumption:

some derivatives of the underlying function f exist.

$$f(x) = f(t) + f'(t) \frac{(x-t)}{1!} + f''(t) \frac{(x-t)^2}{2!} + \dots$$

